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Critical behavior of roughening transitions in parity-conserving growth processes
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We investigate a class of parity-conserving solid-on-solid models that describes the growth of an interface
by the deposition and evaporation of dimers. As a key feature of the models, evaporation of dimers takes place
only at the edges of terraces, leading to a roughening transition between a smooth and a rough phase. We
consider several variants of growth models in order to identify universal and nonuniversal properties. More-
over, a parity-conserving polynuclear growth model is proposed. All variants display the same type of univer-
sal critical behavior at the roughening transition. Because of parity conservation, the critical behavior at the
first few layers can be explained in terms of unidirectionally coupled branching annihilating random walks with
an even number of offspring.@S1063-651X~99!16710-2#

PACS number~s!: 64.60.Ak, 05.40.2a, 82.20.2w
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I. INTRODUCTION

In the present work we continue the investigation o
certain class of nonequilibrium models for interfacial grow
by adsorption and desorption@1#. The models may be used t
describe a layer-by-layer growth process of ad-dimensional
surface by deposition and evaporation ofdimers that are
aligned with the surface. Upon adsorption the dimers dis
ciate into two atoms at neighboring lattice sites. It is assum
that the atoms cannot diffuse on the surface. Furtherm
atoms cannot evaporate from the interior of completed l
ers. Only pairs of neighboring atoms at theedgesof terraces
are able to form a dimer and evaporate back into the
phase.

The most interesting property of this class of growth p
cesses is the emergence of a roughening transition fro
smooth to a rough phase at a certain critical ratio of
adsorption and desorption rates@2#. In contrast to equilib-
rium growth models and nonequilibrium growth process
described by the Kardar-Parisi-Zhang~KPZ! equation@3#,
where roughening transitions take place only ind>2 dimen-
sions, the models discussed in the present work exhib
robust roughening transition even in one spatial dimens
As will be shown below, the scaling properties of the inte
face at the transition differ significantly from the usual sc
ing laws for roughening interfaces, i.e., the models exh
anomalous roughening properties.

The motivation to consider growth processes of dim
originates in recent studies of similar interface models
adsorption and desorption of monomers@4#. In these models
individual atoms are adsorbed with probabilityp on each
lattice site, whereas atoms evaporate with probability 12p
solely at the edges of terraces. It was shown that mono
models of this kind exhibit a roughening transition that
closely related to the universality class of directed perco
tion ~DP! @5#. A more detailed analysis revealed that t
critical behavior of the first few layers can be explained
terms of unidirectionally coupled DP processes@6#. It turned
out that such hierarchies of coupled DP processes not
describe the monomer models of Ref.@4# but also various
other DP-related growth processes, including polynucl
PRE 601063-651X/99/60~4!/3842~11!/$15.00
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growth ~PNG! models@7#, certain models for fungal growth
@8#, and a recently introduced model designed for real-sp
renormalization@9#. Thus the concept of ‘‘coupled DP’
characterizes a whole universality class of roughening tr
sitions @10#.

DP itself is the generic universality class for phase tra
sitions into trapped~absorbing! states and is known to b
extremely robust with respect to the choice of dynamic rul
The DP conjecture@11# states that in a random process wi
short-range interactions any transition from a fluctuating
tive phase into a single absorbing state should belong to
DP class, provided that the dynamics is characterized b
single-component order parameter without additional sy
metries. Non-DP critical behavior is expected in syste
where one of these requirements is violated. An import
example is the so-called parity-conserving~PC! universality
class for phase transitions into absorbing states in which
parity of the particle number is conserved. In one dimensi
this conservation law can also be interpreted as aZ2 symme-
try between two different absorbing states. The PC clas
represented most prominently by branching annihilating r
dom walks with two offspring~BAW2! @12–14#. Other ex-
amples include nonequilibrium kinetic Ising models@15#, in-
teracting monomer-dimer models@16#, as well as models
with two symmetric absorbing states@17#. Therefore, near a
hand is the investigation of the question of how the physi
properties change if the DP mechanism of the growth mod
in Ref. @4# is replaced by a parity-conserving dynamics. T
this end we modify the dynamic rules of these models
usingdimersinstead of monomers that adsorb with probab
ity p and desorb at the edges of terraces~including solitary
dimers! with probability 12p. As dimers consist of two at-
oms, the number of particles at each height level is c
served modulo 2. As shown in Ref.@1#, the model exhibits a
robust roughening transition that is related to the PC cla

In the following we present a detailed numerical analy
of the critical behavior of parity-conserving growth pro
cesses. One of our aims is to clearly identify universal a
nonuniversal properties. To this end we consider four va
ants of the model, a restricted version with random sequ
tial updates, an unrestricted version, as well as the co
3842 © 1999 The American Physical Society
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PRE 60 3843CRITICAL BEHAVIOR OF ROUGHENING TRANSITIONS . . .
sponding variants with parallel updates. It turns out that
variants exhibit the same type of critical behavior at t
roughening transition. In particular, the critical behavior
low-lying levels can successfully be described in terms
unidirectionally coupled PC processes, generalizing the c
cept of the ‘‘coupled DP.’’ Above the transition, howeve
restricted and unrestricted variants display different prop
ties.

The paper is organized as follows. In Sec. II we defi
four variants of the dimer growth model. Their phenomen
logical properties are described in Sec. III. Sections IV and
investigate the critical properties of the interface width a
the densities of exposed sites at the first few layers. We
discuss aspects of spontaneous symmetry breaking and
usual scaling properties for random initial conditions. T
critical behavior at the roughening transition can partly
explained in terms of unidirectionally coupled PC proces
for which we propose a field-theoretic formulation in Se
VI. As will be shown in Sec. VII, it is even possible t
construct a polynuclear growth model that belongs to
same universality class. Our conclusions are summarize
Sec. VIII.

II. DEFINITION OF THE MODELS

The class of models may be introduced in terms o
d-dimensional interface that evolves by the adsorption
desorption of dimers. As a key feature, desorption may o
take place at the edges of a plateau, i.e., at sites that ha
least one neighbor at a lower height. The dimer grow
model is defined on ad-dimensional square lattice withLd

sites and periodic boundary conditions. Each sitei is associ-
ated with an integer height variablehiPZ. We consider four
variantsA,B,C,D of the model that differ in their dynamic
rules.

Variant A is a restricted solid-on-solid~RSOS! model
evolving by random sequential updates. For each attem
update a pair of adjacent sitesi andj is selected at random. I
the heightshi and hj are equal a dimer is adsorbed wi
probability p,

hi→hi11,

hj→hj11, ~1!

or desorbed with probability 12p,

hi→hi21,

hj→hj21 if min
kP, i , j .

hk,hi , ~2!

wherek runs over the nearest neighbors of sitesi and j. An
attempted update is rejected if it violates the RSOS c
straint

uhi2hj u<1, ~3!

i.e., the heights at neighboring sites may differ by at m
one step. A Monte Carlo sweep consisting ofLd local update
attempts corresponds to a time incrementt→t11. For d
51 the dynamic rules are shown in Fig. 1. Notice that
rules are translationally invariant in time and space as we
ll
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in height direction. Thus, the layer ath50 has no particular
physical meaning, although we will often use a flat interfa
at zero height as an initial condition.

Variant B is an unrestricted solid-on-solid~SOS! model
that is defined by the same rules without restriction~3!. Al-
though unrestricted growth is less realistic, it exhibits ess
tially the same type of critical behavior at the rougheni
transition, supporting the claim of universality.

VariantsC andD are counterparts ofA andB employing
parallel updates. More precisely, their lattice is divided in
several sublattices in a way that synchronous updates
each sublattice according to the rules~1! and~2! do not over-
lap. In d51 dimension at least three sublattices are need
However, for technical reasons it is more convenient to w
with four different sublattices, as illustrated in Fig. 2. W
implement this update scheme on a parallel computer w
24 000 string processors. Associating an individual proces
with each lattice site we are able to perform efficient sim
lations. Further details on massive parallel computing
given in Ref.@18#.

III. PHENOMENOLOGY
OF THE INTERFACE DYNAMICS

Although the dimer models are defined in arbitrary spa
dimensions, this work is restricted to the one-dimensio
cased51. Clearly, the morphology of the interface depen
on the growth ratep. Let us first consider the restricted var
ants ~see Fig. 3!. If p is very small, only a few dimers are
adsorbed at the surface, staying there for a short time be
they evaporate back into the gas phase. Thus the interfa
anchored to the actual bottom layer and does not propag
As p increases, a growing number of dimers covers the s
face and large islands of several layers stacked on top
each other are formed. Approaching a certain critical thre
old pc the mean size of the islands diverges and the interf
evolves into a rough state.

FIG. 1. VariantA in d51 dimension: dimers are adsorbed wi
probabilityp and desorbed at the edges of terraces with probab
12p. Evaporation from the middle of the plateaus is not allowe

FIG. 2. VariantsC andD: cyclic parallel updates on four differ
ent sublattices in one spatial dimension.
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3844 PRE 60HAYE HINRICHSEN AND GÉZA ÓDOR
Abovepc one may expect the interface to detach from
bottom layer in the same way as the interface of monom
models starts to propagate in the supercritical phase. H
ever, since dimers are adsorbed at neighboring lattice s
solitary unoccupied sites may emerge. These pinning cen
prevent the interface from moving and lead to the format
of ‘‘droplets’’ ~see Fig. 3!. Due to interface fluctuations, th
pinning centers can slowly diffuse to the left and to the rig
When two of them meet at the same place, they annihi
and a larger droplet is formed. Thus, although the interf
remains pinned, its roughness increases continuously.

As realized in@19#, a second transition takes place atp
50.5 where the width grows most rapidly. In this case
droplets reach an almost triangular shape with unit slope,
the surface becomesfaceted. The tilted surface of the drop
lets fluctuates predominantly by randomly moving triplets
sites at equal height along ‘‘staircases’’ of unit slope.
specting the dynamic rules it is easy to verify that the
‘‘landings’’ move upwards with probabilityp and down-
wards with probability 12p. This explains why the faceting
transition takes place exactly atp50.5. Forp.0.5 the fluc-
tuations are confined to an exponentially small region at
top of the droplets. Therefore, the faceted interface coars
on a logarithmic time scale. A pathological situation emerg
for p51 where evaporation of dimers is forbidden. As t
pinning centers, once formed, cannot diffuse, the interf
quickly evolves into a frozen configuration.

To summarize, the restricted variantsA and C display
three different phases, a smooth phasep,pc , a rough phase
pc,p,0.5, and a faceted phasep.0.5. The phase structur
of the unrestricted variantsB andD is very similar~see Fig.
4!. They too exhibit a roughening transition at a certain cr
cal thresholdpc . However, the rough phase and the tran

FIG. 3. Typical interface configurations of the restricted dim
model ~variantA) for various values ofp ~see text!.

FIG. 4. Typical interface configurations of the unrestrict
dimer model~variant B) for various values ofp. At the transition
p50.5 large spikes of stacked dimers are formed. Forp.0.5 these
spikes are biased to grow with constant velocity.
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tion at p50.5 are different in character due to the formati
of spikes, as will be described below.

IV. CRITICAL BEHAVIOR OF THE INTERFACE WIDTH

The morphology of a growing interface is usually chara
terized by its width

W~L,t !5F 1

L (
i

hi
2~ t !2S 1

L (
i

hi~ t ! D 2G1/2

. ~4!

In order to investigate the scaling properties of the width,
perform Monte Carlo simulations starting from a flat inte
facehi(0)50 and get the following results:

A. The smooth phasep<pc

Figure 5 shows the temporal evolution ofW2(t) for dif-
ferent values of p<pc measured in modelA with L
510 000 sites. As can be seen, the width first increase
W(t);Aln t until it saturates at some constant value. T
initial logarithmic increase suggests the scaling form

W2~ t,e!.a ln@ tF~ ten i!#, ~5!

wherea is an amplitude factor ande5up2pcu denotes the
distance from criticality. The exponentn i describes the sin-
gular behavior of the temporal correlation lengthj i;e2n i

close to the roughening transition.F is a universal scaling
function with the asymptotic behavior

F~z!5H const if z→0,

z21 if z→`.
~6!

In order to estimatea andn i we adjust these quantities in
way that the curves for exp(W2/a)/t versusten i collapse onto
a single one. Using the estimatespc50.317(1), n i52.4(4),
anda50.17(1) we obtain a fairly convincing data collaps
~see right-hand graph of Fig. 5!. However, we observe con
siderable deviations for larger values ofe. These deviations
may indicate corrections of the scaling form~5! in the off-
critical regime and will be analyzed in Sec. V E. Simil
results are obtained for variantsB, C, andD.

r
FIG. 5. Left: the squared widthW2(t) measured in variantA for

various values ofp<pc . Right: data collapse according to Eq.~5!,
visualizing the scaling functionF. Throughout the entire papert is
measured in units of Monte Carlo sweeps.
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B. The roughening transition at p5pc

At the roughening transition the interface width of an i
finite system growslogarithmically as W;Aln t. A similar
logarithmic behavior has also been observed at the roug
ing transition of monomer models@4#. The logarithmic time
dependence suggests the finite-size scaling form@20#

W2~L,t !.a ln@ tG~ t/Lz!#, ~7!

wherez denotes the dynamic exponent.G is a universal scal-
ing function with the same asymptotic behavior as in Eq.~6!.
Thus the interface of finite systems is expected to satura
a constant valueW(L);Aln L. Our numerical results are
summarized in Fig. 6. Plotting exp(W2/a)/t againstt/Lz in the
time interval 10<t<105 for system sizes L
532,64, . . . ,4096, we determinea and z by data collapse.
For all variants we obtain accurate data collapses. The
mates forz coincide in all cases, indicating universal pro
erties of the roughening transition independent of the RS
constraint and the type of updates~see Table I!. In fact, as we
will argue in Sec. V,z.1.75 is the dynamic exponent of th
PC universality class. The amplitudea, however, is nonuni-
versal. A very accurate data collapse is obtained by sim
tions of variantC on a parallel computer and highly suppor
the validity of the scaling form~7!. It would be interesting to
confirm this scaling form by direct diagonalization of th
transfer matrix@21#.

FIG. 6. Finite-size scaling of the interface widthW(L,t) for
variantsA–D. The graphs show data collapses according to
scaling form~7!, visualizing the scaling functionG.

TABLE I. Numerical estimates for the four variants of the dim
model at the roughening transitionp5pc ~upper part! and the tran-
sition p50.5 ~lower part!.

Variant A B C D

Restriction yes no yes no
Updates random random parallel parallel

pc 0.3167(2) 0.292(1) 0.3407(1) 0.302(1)
a 0.172(5) 0.23(1) 0.162(4) 0.19(1)
z 1.75(5) 1.75(5) 1.74(3) 1.77(5)
d0 0.28(2) 0.29(2) 0.275(10) 0.29(2)
d1 0.22(2) 0.21(2) 0.205(15) 0.21(2)
d2 0.14(2) 0.14(3) 0.13(2) 0.14(2)
u/n i 0.765(10) 0.765(10) 0.753(3) no result

ã 1.2(1) undefined 1.25~5! undefined

b̃ 0.34(1) 0.50(1) 0.330(5) 0.49(1)
n-

at

ti-

S

a-

C. The rough phasepc<p<0.5

In the rough phase the formation of pinning centers p
vents the interface from propagating. By diffusion and pa
wise annihilation of the pinning centers the width increas
very slowly. Since the width displays a rather inconclusi
scaling behavior, it was impossible to conjecture an app
priate scaling form@22#. It seems that the width initially
increases algebraically until it slowly crosses over to a lo
rithmic increaseW(t);Aa ln t. The amplitudea and the
crossover time grow withp and diverge at the transition a
p50.5. The crossover time provides a typical time scale
the dynamics in the rough phase. Apart from that, the rou
ening transition is associated with another temporal corr
tion lengthj i5(p2pc)

n i. Thus the rough phase is chara
terized by a complicated interplay of at least two differe
time scales.

D. The transition at p50.5

The restricted as well as the unrestricted variants unde
a second phase transition atp50.5 where the width in-
creasesalgebraically with time asW;t b̃. Let us first con-
sider the restricted case where the transition can be in
preted as afaceting transitionbetween a rough and a facete
phase@19#. As the width increases algebraically, we expe
ordinaryFamily-Vicsekscaling@23# of the form

W~L,t !;L ã f ~ t/L ã/b̃!, ~8!

whereã andb̃ are the roughening and the growth exponen
respectively. However, finite-size simulations~not shown
here! reveal a more complex behavior. After an initial sho
time regime we observe a long transient extending over
decades in time where the interface roughens with the ex
nentsã.0.5 andb̃.0.45. After approximately 5000 time
steps both variantsA andC cross over to a different regim
with b̃.0.33. By a finite-size data collapse we find a roug
ening exponentã.1.2 and a large dynamic exponentz̃

5ã/b̃.3. These results are consistent with the findings
Ref. @19#. In Fig. 7 the crossover appears as a slight cha
of the slope, suggesting the faceting transition atp50.5 to
not be fully scale invariant but characterized by a finite tim
scale. Moreover, as shown in the inset of Fig. 7, the face
transition displays anomalous scaling properties@24#, i.e., the
local width w( l ,t) measured in boxes of sizesl
52,4,8,16, . . . , does not saturate after a short time. Even
small box sizes it continues to increase over several t
decades until it saturates due to the RSOS constraint.

Let us now consider the unrestricted variantsB andD. As
can be seen in Fig. 4, their phase transition atp50.5 is
different in character. Since large spikes are formed, the
face roughens much faster with a growth exponent ofb̃
.0.5 ~see Fig. 7!. In fact, the interface evolves into configu
rations with large columns of dimers separated by pinn
centers. These spikes can grow or shrink almost indep
dently. Thus, the interface roughens by a purely diffus

e
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3846 PRE 60HAYE HINRICHSEN AND GÉZA ÓDOR
mechanism asW(t);At. As the columns are spatially de
coupled, the width does not saturate in finite systems, i.e.
dynamic exponentsã and z̃ have no physical meaning.

E. The faceted/free phase

For p.0.5 the restricted modelsA and C evolve into
faceted configurations~see Fig. 3!. As shown in Ref.@19#,
the width first increases algebraically until the pinning ce
ters become relevant and the system crosses over to a
rithmic increase of the width. Therefore, the faceted ph
may be considered as a rough phase. The unrestricted m
B andD, however, evolve into spiky interface configuration
The spikes are separated and grow independently by de
tion of dimers. Therefore, the interface width increaseslin-
early with time, defining thefree phase of the unrestricte
models.

V. CRITICAL PROPERTIES
OF THE FIRST FEW LAYERS

A. Relation to the PC class

In this section we investigate the roughening transition
p5pc in more detail. In order to understand its relation
the PC class let us consider all sites at the bottom layehi
50 asA particles. Adsorption and desorption processes c
respond to certain effective reactions of theA particles. For
example, the adsorption of a dimer at the bottom layer c
responds to a pair-annihilation process 2A→Ø at rate p.
Similarly, when a dimer evaporates, twoA particles are cre-
ated. However, since dimers can only evaporate at the e
of terraces, this process always requires the presence o
other neighboringA particle, giving rise to an effective reac
tion A→3A at rate 12p. These two processes compete w
one another and resemble a branching-annihilating ran
walk with two offspring~BAW2! @12,13#, which is known to
belong to the PC universality class. In one spatial dimens
the PC class is characterized by three critical exponents

FIG. 7. Power-law roughening of the width in large system
The figure shows the squared width as a function of time at
transition p50.5 ~solid lines!, as well as above the transition fo
p50.6 ~dashed line! and p50.7 ~long-dashed line!. The inset
shows the squared local width of variantA for increasing box sizes
l 52,4,8,16, . . . , as afunction of time~see text!.
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b50.92~2!, n i53.22~6!, n'51.83~3!. ~9!

The two scaling exponentsn i and n' are associated with
temporal and spatial correlation lengths

j i;upc2pu2n i, j';upc2pu2n', ~10!

which diverge at the transition. The order parameter of
PC transition is the density ofA particles, corresponding to
the densityn0 of exposed sites at the bottom layer. Thus,
the smooth phase,n0 should scale as

n0;~pc2p!b0, ~11!

whereb05b is the density exponent of the PC class. Mo
generally, we expectn0 to obey the scaling form

n0~ t,L,e!;t2b0 /n iF0~ ten i,t/Lz!, ~12!

whereF0 is a universal scaling function. As will be show
below, numerical simulations confirm the validity of th
scaling form. This may be surprising since theA particles do
not evolve independently, but are coupled to dynamic p
cesses at higher levels of the interface. However, in
present models this feedback from higher levels is comp
tively weak and does not seem to affect the critical behav
of the A particles at the roughening transition.

In order to investigate the critical behavior at higher le
els, let us introduce the densities of sitesi with hi<k

nk5
1

L (
j 50

k

(
i

dhi , j , k51,2, . . . . ~13!

Following the ideas of Ref.@4# we expectn1 ,n2 , . . . to
scale in the same way asn0 with certain critical exponents
bk , n',k , andn i ,k . However, since the correlation length
of neighboring layers should coincide, the exponentsn',k
andn i ,k should not depend onk, leading to the scaling form

nk~ t,L,e!;t2bk /n iFk~ ten i,t/Lz!. ~14!

Our numerical results support the validity of this scali
form for k>1 in an intermediate scaling regime.

B. Estimation of pc and dk

In order to determine the critical exponents accurately,
perform time-dependent simulations of variantC on a paral-
lel computer. Using a large lattice of 24 000 sites~associat-
ing one processor with each lattice site! we measure
n0 , . . . ,n2 as functions of time up to 23105 time steps av-
eraged over 104 samples. At criticality, the densities are e
pected to decay as

nk~ t !;t2dk, ~15!

where dk5bk /n i . In Fig. 8 the effective exponentd0(t)
@i.e., the local slope ofn0(t) in a log-log plot, see@25## is
plotted againstt in a logarithmic scale for various values o
p. As can be seen, the curve that appears to become app
mately horizontal for larget corresponds to the critical poin
pc50.3407(1). For theexponentd0 we obtain the estimate

d050.275~10!, ~16!

.
e
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PRE 60 3847CRITICAL BEHAVIOR OF ROUGHENING TRANSITIONS . . .
which is in agreement with the expected value of the
classd5b/n i50.285(5).

The estimation of the exponentsdk at higher levels is
more difficult. Averagingdk(t) over two time decades w
obtain the estimates

d150.205~15!, d250.13~2!. ~17!

Less accurate but compatible results for the other variants
listed in Table I. Thus the critical behavior at the first fe
layers is universal and does not depend on the RSOS
straint and the type of updates. However, as can be see
Fig. 8, the effective exponentsd1(t) andd2(t) do not satu-
rate at a constant value in the long-time limit. Instead, th
continue to increase on a logarithmic time scale. At prese
is not clear whether the effective exponents will eventua
saturate after a very long time. The drift of the expone
may indicate violations of scaling in the long-time limit th
are neither related to finite-size effects nor to numerical
rors in the value ofpc . Thus the estimates~17! have to be
taken with care. Similar violations of scaling have been o
served in the monomer case and seem to be an intrinsic p
erty of roughening transitions driven by absorbing-state tr
sitions. We will come back to this problem in Sec. VI.

C. Spontaneous symmetry breaking

The growth processes considered in this paper are tr
lationally invariant in the height direction. This symmetry
spontaneously broken in the smooth phase where the mo
select one of the heights as the bottom layer of the interfa
In order to quantify this symmetry breaking we consider
order parameter

M5
1

L (
j

~21!hj , ~18!

FIG. 8. Effective exponentsdk(t) measured in modelC with
24 000 sites averaged over 104 samples. The first panel showsd0(t)
with p ranging from 0.3406 to 0.3409 from top to bottom, leadi
to the estimatespc50.3407(1) andd050.275(10). The curves fo
d1(t) and d2(t) at p5pc are shown in panels 2 and 3. The la
panel shows the magnetizationM as a function of time.
re

n-
in

y
it

y
s

r-

-
p-
-

s-

els
e.
n

where j runs over all lattice sites. This order parameter c
take positive or negative values and thus reminds us o
magnetization. In the stationary state of the smooth ph
uM u is positive and vanishes at the roughening transition.
in the monomer case, we expect the magnetization to s
near the roughening transition as

uM u;eu, ~19!

where u is a critical exponent. Thus, starting from a fl
interface,uM u should decrease at criticality ast2u/n i. Per-
forming numerical simulations~see Fig. 8 and Table I! we
find u/n i.0.76 for both the restricted and the unrestrict
variants, suggesting thatu is a universal critical exponent. A
will be shown in Sec. VI this exponent can also be seen
unidirectionally coupled PC processes. Its numerical va
u.2.5 is much larger than in the monomer case where
value was found to be 0.65@4#. At present it is not known
whetheru is independent or related to the other bulk exp
nentsb,n i ,n' .

D. Finite-size simulations at criticality

The dynamic exponentz5n i /n' can easily be verified by
finite-size simulations. According to the scaling form~14!,
several measurements ofn0(t) for different system sizes
should collapse onto a single curve ifn0td0 is plotted versus
t/Lz. As shown in Fig. 9, the best data collapse is obtain
for d0.0.27 andz.1.7, which is in agreement with th
known PC exponentsd50.285(5), z51.76(3), and thepre-
vious estimate ofz in Sec. IV.

E. Off-critical simulations

In order to determine the exponentb0 directly, we per-
form off-critical simulations in the steady state of the smoo
phase. Here we expect the stationary densityn0 to scale as
(pc2p)b0, whereb0.0.92(2) is the order parameter exp
nent of the PC class. Surprisingly, a rough estimate ofb0 in
standard Monte Carlo simulations of variantsA andC yields
much smaller values of about 0.6, which deviate from

FIG. 9. Finite-size results for the parallel model forL
564,128, . . . ,4096. The density at the bottom layern0(t) is plotted
as a function of time. The inset shows a data collapse, whic
explained in the text.
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expected value by more than 30%. Similar deviations
observed ifn' andn i are determined in off-critical simula
tions. For example, the estimaten i52.4(5) in Sec. IV is
much smaller than the expected PC valuen i.3.2.

Off-critical steady-state simulations are known to be qu
inaccurate because of long transients. Moreover, they are
tremely sensitive to errors in the estimation ofpc . However,
in the present case the deviations have a different ori
This can be shown by determining the effective expon
b0(e) that is defined as the local slope ofn0(e) in a log-log
representation between the data points (i 21,i )

b0~e i !5
ln n0,i2 ln n0,i 21

ln e i2 ln e i 21
, ~20!

wheree i5pc2pi , providing an estimate

b05 lim
e→0

b0~e!. ~21!

As shown in Fig. 10, the effective exponentincreasesslowly
and tends towards the expected PC value ase→0. A simple
linear extrapolation yields the estimate 0.9, which is in rou
agreement with the expected value ofb0.

The drift of b0(e) is unusual and may be related to th
influence of dynamic processes at higher levels of the in
face. To support this hypothesis, we analyze thetruncated
version of modelC, where the heights are restricted to ta
the values 0 and 1 in order to eliminate the feedback fr
higher levels. Repeating the same type of analysis at
critical pointpc50.583(1), weobserveb0(e) to be in agree-
ment with the expected PC value over a wide range oe.
Thus we are led to the conclusion that dynamic processe
higher levels are responsible for corrections to scaling in
off-critical regime.

F. Unusual scaling for random initial conditions

So far we have considered the temporal evolution star
from an entirely flat interface. It would be natural to expe
the asymptotic scaling behavior to be universal for any ini
interface configuration with finite width and short-range c
relations. Surprisingly this is not true. For example, start
with random initial conditionshi50,1 the densitiesnk turn
out to decay much more slowly. For restricted variants
observe an algebraic decay ofn0 with an exponentd0
.0.13 that differs significantly from the value 0.275 for fl

FIG. 10. Left: the effective exponentb0(e) as a function ofe in
model C with L524 000 sites. After an equilibration of 43105

time steps the bottom layer density is averaged over 103 samples. A
simple linear fit gives the estimateb0'0.89. Right: corresponding
simulation results for the truncated model. Here the effective ex
nent is almost independent ofe. Notice the different ranges ofe.
e
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initial conditions. Similarly, the critical properties of th
faceting transition atp50.5 are affected by random initia
conditions.

The nonuniversal behavior for random initial conditions
related to anadditional parity conservation law. In fact, the
dynamic rules~1! and~2! not only conserve the parity of th
particle number but also conserve the parity of the drop
size. Starting with a flat interface the lateral size of dropl
is always even, allowing them to evaporate entirely. Ho
ever, for a random initial configuration, droplets of odd si
may be formed that have to recombine in pairs before t
can evaporate, slowing down the dynamics of the system

In the language of BAW2’s the additional parity conse
vation law is due to the absence of nearest-neighbor di
sion. Particles can only move by a combination of offspri
production and annihilation, i.e., by steps oftwo lattice sites.
Therefore, particles at even and odd lattice sites have to
distinguished. Only particles of different parity can annih
late. Starting with a fully occupied lattice, all particles ha
alternating parity throughout the whole temporal evolutio
leading to the usual critical behavior at the PC transition. F
random initial conditions, however, particles of equal par
cannot annihilate, slowing down the decay of the parti
density. Similar sector decomposition has been observe
k-mer models~see, for example, M. Barma and co-worke
@34#!. BAW2’s and other particle processes with parit
conserving diffusion will be analyzed in a future study.

G. Comparison with other models

Recently, Park and Kahng proposed a growth model t
involves two symmetric particle species@26#. Particles are
adsorbed~desorbed! with probability q (12q), except at
those sites where the nearest neighbors are occupied by
ticles of the other~same! species. Thus the dynamic rule
mimic a PC transition with two symmetric absorbing sta
@17#. However, the critical exponents at the roughening tr
sition were found to differ significantly from the expecte
PC values. In fact, once a new layer is completed, the c
figuration of the previous layer becomes frozen. Thus
kinks between different domains do not act as pinning c
ters, which destroys the PC transition. Consequently, the
terface starts to propagate forq.qc .

Another parity-conserving model introduced by Nohet al.
@27# was inspired by interacting monomer-dimer models@16#
exhibiting a PC transition. The dynamic rules involve diff
sion, order-preserving branching, and order-breaking bran
ing. In the absence of order-breaking branching, the interf
evolves within a monolayer and undergoes apreroughening
transition belonging to the PC class. In the presence of or
breaking processes several layers may be formed. Howe
in this case the interface is always rough and the transitio
lost.

Even more recently, the same authors investigated a c
of parity-conserving growth models@19#, generalizing the
rules ~1! and ~2! by the addition of a process for the evap
ration of dimers from the middle of plateaus. A similar ge
eralization of monomer models has been studied in the c
text of nonequilibrium wetting@28#. In both cases the
additional evaporation process destroys the stability of
smooth phase. In the dimer models, however, the roughe
transition of the dimer models is replaced by a faceting tr
sition between a rough and an~oppositely! faceted phase

-
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Thus the models of Ref.@19# link anomalous roughening an
faceting transitions.

VI. UNIDIRECTIONALLY COUPLED
BRANCHING-ANNIHILATING RANDOM WALKS

WITH AN EVEN NUMBER OF OFFSPRING

In order to understand the universal properties of par
conserving roughening transitions, let us extend the part
interpretation. Assuming thath50 is the bottom layer of the
interface, we associate particlesA,B,C, . . . with sites at
heighthi<0,1,2, . . . ~see Fig. 11!. As explained before, the
dynamic processes at the bottom layer may be interprete
an effective reactionA→3A,2A→Ø. Similarly, theB par-
ticles on top of the first layer react byB→3B,2B→Ø.
Clearly, the temporal evolution of theB particles strongly
depends on the actual configuration of theA particles. On the
one hand, anA particle implies the presence of aB particle at
the same site, giving rise to an effective reactionA→A1B.
On the other hand, both the RSOS constraint and the res
tion that dimers react at adjacent sites of equal height m
inhibit the above reactions, introducing an effective feedb
from higher levels to lower ones. However, as suggested
our numerical results, this type of inhibiting feedback do
not affect the critical behavior at the roughening transitio

Similarly, theC particles perform an effective BAW2 o
top of the second layer. Therefore, the critical behavior of
first few layers may be described in terms of a simplifi
particle model where several BAW2 processes areunidirec-
tionally coupled according to the reaction scheme

A→3A, B→3B, C→3C,

2A→Ø, 2B→Ø, 2C→Ø, ~22!

A→A1B, B→B1C, C→C1D, . . . ,

generalizing the concept of ‘‘coupled DP’’@6#. We propose
this reaction scheme to characterize the universal behavio
the dimer models at the roughening transition.

To support this hypothesis, we study the reactions~22! by
Monte Carlo simulations. To this end we use three copie
the BAW2 introduced in Ref.@13# coupled by the rule that a
selectedA(B) particle instantaneously creates aB(C) par-
ticle at the same position, provided that the target site
empty. Using a lattice size of 2500 sites we measure
particle densitiesnA ,nB ,nC as functions of time at critical-
ity. As shown in Fig. 12, they display essentially the sa
behavior as the densitiesn0 ,n1 ,n2 in the dimer model. Av-
eraging over one decade in time we obtain the exponen

FIG. 11. Extended particle interpretation. Dimers are adsor
(2A→Ø) and desorbed (A→3A) at the bottom layer. Similar pro
cesses take place at higher levels.
-
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dA50.280~5!, dB50.190~7!, dC50.120~10!,
~23!

which are in fair agreement with the corresponding exp
nents of the dimer model. We also measured the analo
the magnetizationM5nA2nB1nC2nD1••• in 20 coupled
PC processes, obtaining an algebraic decayuM u;t2u/n i with
the exponentu/n i50.74(3). This confirms the hypothesi
that the roughening transition of the dimer models belong
the universality class of unidirectionally coupled PC pr
cesses. Notice that the couplingA→A1B violates parity
conservation at theB level. However, using a parity
conserving coupling such asA→A12B, we obtain similar
results at the transition.

Before turning to the field-theoretic formulation o
coupled PC processes, let us consider the mean-field
proximation of the reaction scheme~22!

] tnA5snA2lnA
2 ,

] tnB5snB2lnB
21mnA , ~24!

] tnC5snC2lnC
2 1mnB , . . . ,

wherenA ,nB ,nC correspond to the densitiesn0 ,n1 ,n2 in the
growth models.s andl are the rates for offspring produc
tion ~dimer evaporation! and pair annihilation~dimer depo-
sition!, respectively. The coefficientm is an effective cou-
pling constant between different particle species. Since th
equations are coupled in only one direction, they can
solved by iteration. Obviously, the mean-field critical poi
is sc50. For small values ofs the stationary particle den
sities in the active state are given by

nA5
s

l
, nB.

m

l S s

m D 1/2

, nC.
m

l S s

m D 1/4

, ~25!

corresponding to the mean-field critical exponents

bA
MF51, bB

MF51/2, bC
MF51/4, . . . . ~26!

These exponents should be valid ford.dc52 ~see below!.
Solving the asymptotic temporal behavior we findn i51,
implying that dk

MF522k. Although this simple mean-field
calculation does not include parity conservation, it expla
the reduced values of the exponents at higher levels.
different numerical values in one dimension are due to fl
tuation corrections that may be computed within a fie
theoretic renormalization group approach. A field theory

d

FIG. 12. Unidirectionally coupled PC processes. Left: densit
nA ,nB ,nC as functions of time. Right: magnetizationM (t) as a
function of time averaged over 1000 independent realizations.
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a single BAW2 was introduced and studied in detail
Cardy and Ta¨uber @14#. Following their notation, the effec
tive ~unshifted! action of unidirectionally coupled BAW2’s
should be given by

S@c0 ,c1 ,c2 , . . . ,c̄0 ,c̄1 ,c̄2 , . . . #

5E ddx dt (
k50

`

$c̄k~] t2D¹2!ck2l~12c̄k
2!ck

2

1s~12c̄k
2!c̄kck1m~12c̄k!c̄k21ck21%, ~27!

wherec215c̄21[0. Here the fieldsck andc̄k represent the
configurations of the system at levelk. However, even for a
single copy in 111 dimensions the field-theoretic treatme
poses considerable difficulties. They stem from the prese
of two critical dimensions:dc52, above which mean-field
theory applies, anddc8'4/3, where ford.dc8 (d,dc8) the
branching process is relevant~irrelevant! at the annihilation
fixed point. Therefore the physically interesting spatial
mensiond51 cannot be accessed by a controllede expan-
sion down from upper critical dimensiondc52. A one-loop
calculation for the action~27! would be an even more diffi
cult task.

A fundamental problem of the field theory for coupled D
describing the monomer case is the relevant couplingm,
which grows under renormalization group transformatio
@6#. Moreover, even in a one-loop calculation certain infrar
divergent diagrams are encountered that are proportiona
m. Similar difficulties are expected for unidirectional
coupled PC processes. They might be responsible for vi
tions of scaling in the long-time limit appearing as a curv
ture of nB andnC in Fig. 12.

VII. PARITY-CONSERVING POLYNUCLEAR GROWTH
MODELS

Roughening transitions related to coupled DP were fi
observed in so-called polynuclear growth~PNG! processes
@7,29–33#. In these models the interface grows by nucleat
processes and deterministic growth of terraces. The us
parallel updates ensures that the maximal propagation ve
ity is 1. Depending on the rates for nucleation and terr
growth, the models exhibit a roughening transition from
moving rough phase to a smooth phase propagating at m
mal velocity. As shown in Ref.@4#, PNG models may be
viewed as upside-down versions of monomer models i
comoving frame. In some cases it is even possible to re
PNG and monomer models exactly to each other, resolv
the apparent paradox that the transition in PNG models
quires parallel updates, whereas for monomer models
type of updates does not play a role.

In order to understand the DP mechanism, let us cons
the PNG model introduced by Kerte´sz and Wolf@7#, which is
updated synchronously in two substeps. At first all
~down! steps of the interface move deterministically to t
left ~right! over a distance ofu lattice spacings. Then al
heights are increased with probabilityp. Thus the model is
unrestricted. Foru51 this dynamic rule can be expressed
a single parallel update
ce

-
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hi~ t11!5H m~ t !11 with probabilityp

m~ t ! with probability 12p,
~28!

where m(t)5max@hi21(t),hi(t),hi11(t)#. Starting from a flat
interfacehi(0)50, the sites at maximal heighthi(t)5t may
be considered as the active sites of a DP process. The n
ation process turns active sites into inactive sites with pr
ability 12p, while the deterministic growth of terraces re
sembles offspring production. Therefore, ifp is large
enough, the interface is smooth and propagates with velo
1. Below a critical thresholdpc50.539(1), however, the
growth velocity is smaller than 1 and the interface evolv
into a rough state. As shown in Ref.@6#, this model is a
realization of unidirectionally coupled DP processes in a
moving frame, where the order parametersnk are given by

nk~ t !5
1

L (
i

(
h50

k

dhi (t),t2h . ~29!

In the following we introduce a parity-conserving PN
model that belongs to the universality class of unidirectio
ally coupled PC processes. The model is defined on a o
dimensional lattice with periodic boundary conditions a
evolves by sublattice-parallel updates. In the first half tim
step pairs of sites (i ,i 11) with eveni are updated. Ifhi(t)
Þhi 11(t), the heights are incremented by one step,

hi~ t11/2!5hi~ t !11, ~30!

hi 11~ t11/2!5hi 11~ t !11.

If, however, the two heights are equal, they are updated
the probabilistic rule

hi~ t11/2!5hi 11~ t11/2!

5H m~ t !11 with probabilityp

m~ t ! with probability 12p,
~31!

where m(t)5max@hi21(t),hi(t),hi11(t),hi12(t)#. In the second
half time step the same update rule is applied to odd pair
sites. Clearly, this model generalizes the PNG model of R
@7# and conserves parity at each height level in a comov
frame. The conservation law leads to the formation of p
ning centers moving at maximal velocity.

Performing Monte Carlo simulations we observe a roug
ening transition at the critical thresholdpc50.5697(3).
Starting from a flat interface, we measure the densitiesnk(t)
defined in Eq.~29! as functions of time. As shown in Fig. 13
the temporal decay ofnk is similar to the one observed in th
dimer model. Averaged over two decades in time we obt
the estimates

d050.28~1!, d150.21~2!, d250.14~2!, ~32!

which are compatible with the values listed in Table I. T
magnetizationM (t) defined in Eq.~18! does not show a
clean power-law behavior but seems to approach
asymptotic decayt20.77, in agreement with previous finding
~see inset of Fig. 13!. Therefore, we conclude that the roug
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ening transition of the parity-conserving PNG model belon
to the universality class of unidirectionally coupled PC p
cesses.

VIII. CONCLUSIONS AND OUTLOOK

In this paper we have investigated a class of par
conserving growth processes in which dimers adsorb at s
of equal height and desorb at the edges of terraces. A
critical growth ratep5pc the models display a roughenin
transition from a smooth to a rough phase. In order to de
onstrate the robustness of this transition, we have stu
four variants of a ~111!-dimensional parity-conserving
growth process with and without RSOS constraint, using
ther random-sequential or sublattice-parallel dynamics.
addition, we have introduced a parity-conserving polynucl
growth process where a similar transition takes place i
comoving frame. In all cases the roughening transition
characterized by the same type of critical behavior.

The investigated dimer models generalize previou
studied monomer models. Their essential feature is a pa
conservation law at each height level, changing the unive
properties of the roughening transition. The conservation
leads to the formation of pinning centers separating regi
of even and odd parity. Thus, in contrast to the monom
case, the interface remains pinned to the initial height le
At the transition the width is found to increaselogarithmi-
cally with time due to a slow diffusion and annihilation o
the pinning centers. In Eq.~7! we have proposed a finite-siz

FIG. 13. Parity-conserving PNG model. The densit
n0 , . . . ,n3 are shown as functions of time. The exponentsdk are
estimated in the interval 103<t<105, suggesting that the mode
belongs to the universality class of unidirectionally coupled PC p
cesses. The inset shows the magnetizationM (t). The dashed line
indicates the slope20.77.
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scaling form for logarithmic roughening that is confirmed
high precision simulations. Moreover, we have shown t
the universal critical behavior at the first few layers may
described in terms of unidirectionally coupled branchin
annihilating random walks with two offspring. Thus we su
gest that the concept of undirectionally coupled PC proces
defines a whole universality class of parity-conservi
roughening transitions.

In the case of equal rates for dimer adsorption and des
tion all variants undergo a second phase transition where
width increasesalgebraically. In the restricted case this tran
sition has been identified as a faceting transition from
rough to a faceted phase@19#. In the unrestricted variants
however, we observe a transition from a rough to a fre
growing phase characterized by spiky interface configu
tions.

There are various possible extensions and generalizat
of the models studied in this paper. Very recently, Nohet al.
@19# investigated a generalization of variantA where dimers
may also evaporate from the middle of plateaus. Even a
very small rate this additional process destroys the stab
of the smooth phase, turning it into a faceted phase. Rem
ably, a sharp transition between the faceted and the ro
phase still remains, leading to interesting crossover phen
ena between different universality classes that have not b
studied so far. It would also be interesting to investiga
parity-conserving growth processes in higher dimensio
Since the upper critical dimensiondc8 is less than 2, we ex-
pect the roughening transition—if still existing—to be d
scribed by mean-field exponents. One may also cons
growth processes ofn-mers where the number of particles
each height level is preserved modulon. Especially in higher
dimensions, thesen-mers might appear in different shape
and orientations. After all it would also be interesting to fin
experimental realizations for deposition and evaporation
composite particles.
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