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Critical behavior of roughening transitions in parity-conserving growth processes
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We investigate a class of parity-conserving solid-on-solid models that describes the growth of an interface
by the deposition and evaporation of dimers. As a key feature of the models, evaporation of dimers takes place
only at the edges of terraces, leading to a roughening transition between a smooth and a rough phase. We
consider several variants of growth models in order to identify universal and nonuniversal properties. More-
over, a parity-conserving polynuclear growth model is proposed. All variants display the same type of univer-
sal critical behavior at the roughening transition. Because of parity conservation, the critical behavior at the
first few layers can be explained in terms of unidirectionally coupled branching annihilating random walks with
an even number of offspringiS1063-651X99)16710-2

PACS numbsgs): 64.60.Ak, 05.40-a, 82.20-w

I. INTRODUCTION growth (PNG) models[7], certain models for fungal growth
[8], and a recently introduced model designed for real-space
In the present work we continue the investigation of arenormalization[9]. Thus the concept of “coupled DP”
certain class of nonequilibrium models for interfacial growth characterizes a whole universality class of roughening tran-
by adsorption and desorptidph]. The models may be used to sitions[10].
describe a layer-by-layer growth process a-dimensional DP itself is the generic universality class for phase tran-
surface by deposition and evaporation dimers that are  sitions into trappedabsorbing states and is known to be
aligned with the surface. Upon adsorption the dimers dissoextremely robust with respect to the choice of dynamic rules.
ciate into two atoms at neighboring lattice sites. It is assumedhe DP conjectur¢ll] states that in a random process with
that the atoms cannot diffuse on the surface. Furthermoreshort-range interactions any transition from a fluctuating ac-
atoms cannot evaporate from the interior of completed laytive phase into a single absorbing state should belong to the
ers. Only pairs of neighboring atoms at th@gesof terraces DP class, provided that the dynamics is characterized by a
are able to form a dimer and evaporate back into the gasingle-component order parameter without additional sym-
phase. metries. Non-DP critical behavior is expected in systems
The most interesting property of this class of growth pro-where one of these requirements is violated. An important
cesses is the emergence of a roughening transition from example is the so-called parity-conservifRC) universality
smooth to a rough phase at a certain critical ratio of theclass for phase transitions into absorbing states in which the
adsorption and desorption ratg2]. In contrast to equilib- parity of the particle number is conserved. In one dimension,
rium growth models and nonequilibrium growth processeshis conservation law can also be interpreted @s aymme-
described by the Kardar-Parisi-Zhaiii§PZ) equation[3],  try between two different absorbing states. The PC class is
where roughening transitions take place onlglla2 dimen-  represented most prominently by branching annihilating ran-
sions, the models discussed in the present work exhibit dom walks with two offspring BAW2) [12—14. Other ex-
robust roughening transition even in one spatial dimensionamples include nonequilibrium kinetic Ising modgl%], in-
As will be shown below, the scaling properties of the inter-teracting monomer-dimer mode[46], as well as models
face at the transition differ significantly from the usual scal-with two symmetric absorbing statEs7]. Therefore, near at
ing laws for roughening interfaces, i.e., the models exhibithand is the investigation of the question of how the physical
anomalous roughening properties. properties change if the DP mechanism of the growth models
The motivation to consider growth processes of dimerdn Ref.[4] is replaced by a parity-conserving dynamics. To
originates in recent studies of similar interface models forthis end we modify the dynamic rules of these models by
adsorption and desorption of monomg4$ In these models usingdimersinstead of monomers that adsorb with probabil-
individual atoms are adsorbed with probabiliyon each ity p and desorb at the edges of terra¢esluding solitary
lattice site, whereas atoms evaporate with probabilitypl  dimerg with probability 1—p. As dimers consist of two at-
solely at the edges of terraces. It was shown that monomeyms, the number of particles at each height level is con-
models of this kind exhibit a roughening transition that isserved modulo 2. As shown in R¢fl], the model exhibits a
closely related to the universality class of directed percolarobust roughening transition that is related to the PC class.
tion (DP) [5]. A more detailed analysis revealed that the In the following we present a detailed numerical analysis
critical behavior of the first few layers can be explained inof the critical behavior of parity-conserving growth pro-
terms of unidirectionally coupled DP proces$ék It turned  cesses. One of our aims is to clearly identify universal and
out that such hierarchies of coupled DP processes not onlyonuniversal properties. To this end we consider four vari-
describe the monomer models of Rp4] but also various ants of the model, a restricted version with random sequen-
other DP-related growth processes, including polynucleatial updates, an unrestricted version, as well as the corre-
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sponding variants with parallel updates. It turns out that all
variants exhibit the same type of critical behavior at the
roughening transition. In particular, the critical behavior at
low-lying levels can successfully be described in terms of
unidirectionally coupled PC processes, generalizing the con-
cept of the “coupled DP.” Above the transition, however,
restricted and unrestricted variants display different proper- g
ties. i
The paper is organized as follows. In Sec. Il we define
four variants of the dimer growth model. Their phenomeno- , . . : . .
logical properties are desc?ibed in Sec. ll. Sectigns IV and V FIG. 1. VariantA in d=1 dimension: dimers are ad_sorbed W't.h
investigate the critical properties of the interface width andprobabllltylo an(.j desorbed at t.he edges of terraces .W'th probability
. " . 1—p. Evaporation from the middle of the plateaus is not allowed.
the densities of exposed sites at the first few layers. We also
discuss aspects of spontaneous symmetry breaking and U-peight direction. Thus, the layer ht=0 has no particular

usual scaling properties for random initial conditions. Theypysical meaning, although we will often use a flat interface
critical behavior at the roughening transition can partly beg; 7¢rq height as an initial condition.

explained in terms of unidirectionally coupled PC processes \/ariant B is an unrestricted solid-on-solic6OS model

for which_ we propose a fieId—theorgtiq formulation .in Sec.that is defined by the same rules without restrictign Al-

VI. As will be shown in Sec. VI, it is even possible 10 q,gh unrestricted growth is less realistic, it exhibits essen-

construct a polynuclear growth model that belongs to thgjg|ly the same type of critical behavior at the roughening

same universality class. Our conclusions are summarized Ransition, supporting the claim of universality.

Sec. VIII. VariantsC andD are counterparts ok and B employing

parallel updates. More precisely, their lattice is divided into
Il. DEFINITION OF THE MODELS several sublattices in a way that synchronous updates on

each sublattice according to the rul@s and(2) do not over-

ndfP: Ind=1 dimension at least three sublattices are needed.

owever, for technical reasons it is more convenient to work

The class of models may be introduced in terms of
d-dimensional interface that evolves by the adsorption a
desorption of dimers. As a key feature, desorption may onl

take place at the edges of a plateau, i.e., at sites that have. 'tth four dlffgrent sublattices, as illustrated in Fig. 2. Wg
least one neighbor at a lower height. The dimer grOW,[hlmpIement this update scheme on a parallel computer with

model is defined on a-dimensional square lattice with? 24000 string processors. Associating an individual processor

sites and periodic boundary conditions. Each siteassoci- :N't.h eaclr:1 Iaﬁlce dsne .}Ne are able_ to perfo”rrrll eff|C|ent_ simu-
ated with an integer height variabtee Z. We consider four "’?“0”5.- urther details on massive parallel computing are
variantsA,B,C,D of the model that differ in their dynamic given in Ref.[18].

rules.

Variant A is a restricted solid-on-solidRSOS model
evolving by random sequential updates. For each attempted
update a pair of adjacent siteandj is selected at random. I Although the dimer models are defined in arbitrary spatial
the heightsh; and h; are equal a dimer is adsorbed with dimensions, this work is restricted to the one-dimensional
probability p, cased=1. Clearly, the morphology of the interface depends

on the growth rate. Let us first consider the restricted vari-

[Il. PHENOMENOLOGY
OF THE INTERFACE DYNAMICS

hi—hi+1, ants(see Fig. 3. If p is very small, only a few dimers are
hj—h;+1, (1) adsorbed at the surface, staying there for a short time before
they evaporate back into the gas phase. Thus the interface is
or desorbed with probability 4 p, anchored to the actual bottom layer and does not propagate.
As p increases, a growing number of dimers covers the sur-
hi—h;—1, face and large islands of several layers stacked on top of
each other are formed. Approaching a certain critical thresh-
hj—h;—1 if min hc<h;, (2)  old p, the mean size of the islands diverges and the interface
ke<ij> evolves into a rough state.
wherek runs over the nearest neighbors of sitesdj. An oo o (&9 o o
attempted update is rejected if it violates the RSOS con-
straint —o—{o—0—0 o (000 i+l
[hi—hj|<1, 3 ——0—{0—0—0 0o (¢ t:2

i.e., the heights at neighboring sites may differ by at most —o—eo o (00 o o (o 3
one step. A Monte Carlo sweep consisting.dflocal update
attempts corresponds to a time increméntt+1. Ford
=1 the dynamic rules are shown in Fig. 1. Notice that the FIG. 2. VariantsC andD: cyclic parallel updates on four differ-
rules are translationally invariant in time and space as well asnt sublattices in one spatial dimension.
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FIG. 3. Typical interface configurations of the restricted dimer
model(variantA) for various values op (see texk FIG. 5. Left: the squared widtW?(t) measured in variark for
various values op=<p.. Right: data collapse according to H§),

Above p, one may expect the interface to detach from theVisualizing _the s_caling functiofr. Throughout the entire papéis
bottom layer in the same way as the interface of monomef'easured in units of Monte Carlo sweeps.
models starts to propagate in the supercritical phase. How-
ever, since dimers are adsorbed at neighboring lattice site§on atp=0.5 are different in character due to the formation
solitary unoccupied sites may emerge. These pinning centef§ spikes, as will be described below.
prevent the interface from moving and lead to the formation
of “d_roplets” (see Fig. 3. Du.e to interface fluctuations, t.he IV. CRITICAL BEHAVIOR OF THE INTERFACE WIDTH
pinning centers can slowly diffuse to the left and to the right.
When two of them meet at the same place, they annihilate The morphology of a growing interface is usually charac-
and a larger droplet is formed. Thus, although the interfacderized by its width
remains pinned, its roughness increases continuously.

As realized in[19], a second transition takes placepat 1 ) 1 2112
=0.5 where the width grows most rapidly. In this case the W(L,t)=[t E h; (t)_(fz hi(t)> } . (4)
droplets reach an almost triangular shape with unit slope, i.e., : :
the surface becomdaceted The tilted surface of the drop-
lets fluctuates predominantly by randomly moving triplets ofIn order to investigate the scaling properties of the width, we
sites at equal height along “staircases” of unit slope. In-perform Monte Carlo simulations starting from a flat inter-
specting the dynamic rules it is easy to verify that thesdaceh;(0)=0 and get the following results:
“landings” move upwards with probabilityp and down-
wards with probability +p. This explains why the faceting
transition takes place exactly pt=0.5. Forp>0.5 the fluc- ] ) ]
tuations are confined to an exponentially small region at the Figure 5 shows the temporal evolution \8f(t) for dif-
top of the droplets. Therefore, the faceted interface coarserfgrent values ofp<p. measured in modelA with L
on a logarithmic time scale. A pathological situation emerges= 10000 sites. As can be seen, the width first increases as
for p=1 where evaporation of dimers is forbidden. As the W(t)~vInt until it saturates at some constant value. The
pinning centers, once formed, cannot diffuse, the interfacénitial logarithmic increase suggests the scaling form

uickly evolves into a frozen configuration.

| To ysummarize, the restricted \?ariaanand C display WE(t,e)=aln[tF(te")], (5)
three different phases, a smooth phpsep., a rough phase
P.<p<0.5, and a faceted phape-0.5. The phase structure Wherea is an amplitude factor and=|p—p.| denotes the
of the unrestricted varian® andD is very similar(see Fig. ~distance from criticality. The exponemj describes the sin-
4). They too exhibit a roughening transition at a certain criti-gular behavior of the temporal correlation lengfh~ e "l

cal thresholdp,. However, the rough phase and the transi-close to the roughening transitioR. is a universal scaling
function with the asymptotic behavior

A. The smooth phasep<p,

= p=0.1

const if {—0,

F(J) (6)

| PP el ot s e i p=p. = §71 if g_mc

In order to estimat@ and v we adjust these quantities in a
way that the curves for exp@/a)/t versuste?l collapse onto
05 a single one. Using the estimates=0.3111), v=2.4(4),
p=v. anda=0.17(1) we obtain a fairly convincing data collapse
(see right-hand graph of Fig).5However, we observe con-
FIG. 4. Typical interface configurations of the unrestricted Siderable deviations for larger values @f These deviations
dimer model(variantB) for various values op. At the transiton ~ may indicate corrections of the scaling fori®) in the off-
p=0.5 large spikes of stacked dimers are formed.Fo0.5 these  critical regime and will be analyzed in Sec. V E. Similar
spikes are biased to grow with constant velocity. results are obtained for varianBs C, andD.
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10* : ; ; ; C. The rough phasep.<p<0.5
10° .

- L 107 F D - In the rough phase the formation of pinning centers pre-
o0 L 1< . vents the interface from propagating. By diffusion and pair-
- = 100 - C 7 wise annihilation of the pinning centers the width increases
B L 15 very slowly. Since the width displays a rather inconclusive
© sl0° ] scaling behavior, it was impossible to conjecture an appro-

ot L0 ot L priate scaling form[22]. It seems that the width initially
10° 107 107 10" 10 107 107 107 100 10 increases algebraically until it slowly crosses over to a loga-

t/L’ /L rithmic increaseW(t)~yalnt. The amplitudea and the

crossover time grow withp and diverge at the transition at
=0.5. The crossover time provides a typical time scale of
he dynamics in the rough phase. Apart from that, the rough-
ening transition is associated with another temporal correla-
B. The roughening transition at p=p, tion length & =(p—pc)"l. Thus the rough phase is charac-
At the roughening transition the interface width of an in- terized by a complicated interplay of at least two different

finite system growsogarithmically as W~ Int. A similar M€ scales.
logarithmic behavior has also been observed at the roughen-

ing transition of monomer mode[4]. The logarithmic time

dependence suggests the finite-size scaling {@oh

2 s 7 The restricted as well as the unrestricted variants undergo

WAL H=alntG(LY], ™ a second phase transition pt=0.5 where the width in-
wherez denotes the dynamic expone@tis a universal scal- creasesalgebraically with time asW~t”. Let us first con-
ing function with the same asymptotic behavior as in®@.  sider the restricted case where the transition can be inter-
Thus the interface of finite systems is expected to saturate @reted as daceting transitionbetween a rough and a faceted
a constant valuaNV(L)~+InL. Our numerical results are phase[19]. As the width increases algebraically, we expect
summarized in Fig. 6. Plotting exyp€/a)/t againstt/L? inthe  ordinary Family-Vicsekscaling[23] of the form
time interval 16<t<10° for system sizes L
=32,64 ...,4096, we determin@ andz by data collapse.
For all variants we obtain accurate data collapses. The esti-
mates forz coincide in all cases, indicating universal prop-
erties of the roughening transition independent of the RSOS ~ ~ ,
constraint and the type of updat@ee Table)l In fact, as we Wherea_ andg are the roughenmg ano_l the g_rowth exponents,
will argue in Sec. Vz=1.75 is the dynamic exponent of the respectively. However, finite-size _S|mulat|omso_t _s_hown
PC universality class. The amplitude however, is nonuni- here rev.eal a more complex behawo_r. After an mltlal short-
versal. A very accurate data collapse is obtained by simuldime regime we observe a long transient extending over two
tions of variantC on a parallel computer and highly supports decadfs in time v!here the interface roughens with the expo-
the validity of the scaling forng7). It would be interesting to  nentsa=0.5 and3=0.45. After approximately 5000 time
confirm this scaling form by direct diagonalization of the steps both variantd andC cross over to a different regime

FIG. 6. Finite-size scaling of the interface widW/(L,t) for
variantsA—-D. The graphs show data collapses according to th
scaling form(7), visualizing the scaling functiofs.

D. The transition at p=0.5

W(L,t)~Lf(t/LYF), (8)

transfer matriq21]. with B=0.33. By a finite-size data collapse we find a rough-
TABLE I. Numerical estimates for the four variants of the dimer e”j”g exponenta=1.2 and a large dynamic exponent
model at the roughening transitign=p. (upper parntand the tran- = a/B=3. These results are consistent with the findings of
sition p=0.5 (lower parj. Ref.[19]. In Fig. 7 the crossover appears as a slight change
of the slope, suggesting the faceting transitiorpat0.5 to
Variant A B C D not be fully scale invariant but characterized by a finite time
- scale. Moreover, as shown in the inset of Fig. 7, the faceting
Restriction yes no yes no

transition displays anomalous scaling properfti&4, i.e., the

Updates random random parallel parallel hcal width w(l,t) measured in boxes of sizes

Pe 0.3167(2) 0.292(1) 0.3407(1) 0.302(1) =2,4,8,16...,does not saturate after a short time. Even for
0.172(5) 0.23(1) 0.162(4) 0.19¢1) small box sizes it continues to increase over several time

z 1.75(5) 1.75(5) 1.74(3) 1.77(s)  decades until it saturates due to the RSOS constraint.

S 0.28(2) 0.29(2) 0.275(10) 0.29(2) Let us now gons_lder the u.nrestrlcted var!aIBtand D. A§

5 0.22(2) 0.21(2) 0.205(15) 0.21(2) can be seen in Fig. 4,. their phase_ transitionpat0.5 is

5, 0.14(2) 0.14(3) 0.13(2) 0.14(2) different in character. Since large spikes are formed, tbe sur-

olv| 0.765(10) 0.765(10) 0.753(3) noresult face roughgns much faster.with a growth exponent@of

=0.5(see Fig. 7. In fact, the interface evolves into configu-
P 1.2(1) undefined ~ 1.25  undefined  rations with large columns of dimers separated by pinning
B 0.34(1) 0.50(1) 0.330(5) 0.49(1) centers. These spikes can grow or shrink almost indepen-

dently. Thus, the interface roughens by a purely diffusive
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10 . - . . B=0.922), v=3.226), v, =1.833). (9)
T 107
. / //16/ 1 D. . The two scaling exponents; and v, are associated with
10 F T ////8; 10 w00 //’ - ] temporal and spatial correlation lengths
| ///4/_ 0 e /']) . .
. 2 b e &~lpe—pl ™", & ~Ip—p| ", (10)
r e -1 7 T
W) 010 100 10 1000 which diverge at the transition. The order parameter of the
. PC transition is the density @& particles, corresponding to
100 - the densityn, of exposed sites at the bottom layer. Thus, in
the smooth phasey, should scale as
2
107 No~(Pc—P)*, (1)
o | T where Bo= B is the density exponent of the PC class. More
10 10" 10° 10° 10° 10 10° generally, we expeat to obey the scaling form
t No(t,L, €)~t Ao "I (te”l t/L), (12

FIG. 7. Power-law roughening of the width in large systems. . ) . . )
The figure shows the squared width as a function of time at thévhere®q is a universal scaling function. As will be shown
transitionp=0.5 (solid lines, as well as above the transition for Pelow, numerical simulations confirm the validity of this
p=0.6 (dashed ling and p=0.7 (long-dashed ling The inset Scaling form. This may be surprising since th@articles do
shows the squared local width of variahfor increasing box sizes not evolve independently, but are coupled to dynamic pro-
1=2,4,8,16. .., as aunction of time(see text cesses at higher levels of the interface. However, in the
present models this feedback from higher levels is compara-
mechanism adV(t)~ \t. As the columns are spatially de- tively weak and does not seem to affect the critical behavior
coupled, the width does not saturate in finite systems, i.e., thef the A particles at the roughening transition.

dynamic exponentgl andz have no physical meaning. In order to investigate the critical behavior at higher lev-
els, let us introduce the densities of sitesith h;<k
E. The faceted/free phase 1.k
For p>0.5 the restricted modelé and C evolve into nk:f E E 6hi i k=1,2,.... (13
I

faceted configurationtsee Fig. 3. As shown in Ref[19], =0

the width first increases algebraically until the pinning CeNtyllowing the ideas of Ref[4] we expectn,n,, ... to

ters t_)eqome relevant and_ the system crosses over 1o a IOgérj'éale in the same way ag with certain critical exponents
rithmic increase of the width. Therefore, the faceted phas v, ., andv,. However, since the correlation lengths
L] 1,k K L]

may be considered as a rough phase. The unrestricted mod neighboring layers should coincide, the exponents,

B andD, however, evolve into spiky interface configurations. : :
The spikes are separated and grow independently by depoé”}pd V).« should not depend ok leading to the scaling form

tion of dimers. Therefore, the interface width increakes Ne(t,L,e)~t A/VId (te”l t/L?). (14)
early with time, defining thefree phase of the unrestricted
models. Our numerical results support the validity of this scaling

form for k=1 in an intermediate scaling regime.
V. CRITICAL PROPERTIES
OF THE FIRST FEW LAYERS B. Estimation of p, and &y

A. Relation to the PC class In order to determine the critical exponents accurately, we

In this section we investigate the roughening transition a elzrform tl?we-(:ijapendeTt amrlg_ﬂonsfoé:ggghb_? a pafai'
p=p. in more detail. In order to understand its relation to i€l computer. Using a large 1atlice o sitessoclat

the PC class let us consider all sites at the bottom layer INg one processor with _each lattice 05$|t_we measure
=0 asA particles. Adsorption and desorption processes corto: -+ N2 @S %mctlons of t|me_ up .to 21 t|me_s_teps av-
respond to certain effective reactions of thearticles. For eraged over T0samples. At criticality, the densities are ex-
example, the adsorption of a dimer at the bottom layer corpeCtEd to decay as

responds to a pair-annihilation proces8-2@ at ratep. n(t)~t~ %, (15)
Similarly, when a dimer evaporates, twoparticles are cre-

ated. However, since dimers can only evaporate at the edgeghere 6,=B/v|. In Fig. 8 the effective exponenty(t)

of terraces, this process always requires the presence of afie., the local slope ohy(t) in a log-log plot, sed25]] is
other neighboringA particle, giving rise to an effective reac- plotted against in a logarithmic scale for various values of
tion A—3A at rate I-p. These two processes compete withp. As can be seen, the curve that appears to become approxi-
one another and resemble a branching-annihilating randomnately horizontal for largé corresponds to the critical point

walk with two offspring(BAW2) [12,13, which is knownto  p.=0.34071). For theexponentd, we obtain the estimate
belong to the PC universality class. In one spatial dimension

the PC class is characterized by three critical exponents 60=0.27510), (16)
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10 10 FIG. 9. Finite-size results for the parallel model far
t t =64,128 . ..,4096. The density at the bottom lay®y(t) is plotted
as a function of time. The inset shows a data collapse, which is

FIG. 8. Effective exponents$,(t) measured in modeC with . .
explained in the text.

24000 sites averaged overi$amples. The first panel showg(t)

with p ranging from 0.3406 to 0.3409 from top to bottom, leading herei Il latti . hi d
to the estimatep, = 0.3407(1) ands,=0.275(10). The curves for wherej runs over all lattice sites. This order parameter can

5,(t) and 5,(t) at p=p, are shown in panels 2 and 3. The last [@k€ positive or negative values and thus reminds us of a
panel shows the magnetizatidh as a function of time. magnetization. In the stationary state of the smooth phase

M| is positive and vanishes at the roughening transition. As
which is in agreement with the expected value of the pdn the monomer case, we expect the magnetization to scale
classd= /v =0.2855). near the roughening transition as

The estimation of the exponent§ at higher levels is
more difficult. Averagingd,(t) over two time decades we
obtain the estimates

M|~ €, (19

where 6 is a critical exponent. Thus, starting from a flat
interface,|M| should decrease at criticality as”"I. Per-
forming numerical simulationgsee Fig. 8 and Table) we
find 6/v=0.76 for both the restricted and the unrestricted

; . - . ) Gariants suggesting thatis a universal critical exponent. As
listed in Table I. Thus the critical behavior at the first few will be shown in Sec. VI this exponent can also be seen in

Iaye_rs Is universal and does not depend on the RSOS COrlll'nidirectionally coupled PC processes. Its numerical value
straint and the type of updates. However, as can be seen |
Fig. 8, the effective exponent$;(t) and §,(t) do not satu-
rate at a constant value in the long-time limit. Instead, the
continue to increase on a logarithmic time scale. At present i
is not clear whether the effective exponents will eventually
saturate after a very long time. The drift of the exponents

may indicate violations of scaling in the long-time limit that D. Finite-size simulations at criticality

are neither related to finite-size effects nor to numerical er- The dynamic exponemt= v/v, can easily be verified by

rors in the value ofp;. Thus the estimate€l?7) have to be finite-size simulations. According to the scaling fofi¥),
taken with care. Similar violations of scaling have been obseyeral measurements of,(t) for different system sizes
served in the monomer case and seem to be an intrinsic proghould collapse onto a single curvenigt® is plotted versus
erty of roughening transitions driven by absorbing-state trant/|_ z. As shown in Fig. 9, the best data collapse is obtained

5,=0.20515), 6,=0.132). (17)

=2.5 is much larger than in the monomer case where the
value was found to be 0.6E!]. At present it is not known

hetheré is independent or related to the other bulk expo-
nentsg, v, v, .

sitions. We will come back to this problem in Sec. VI. for 5,~0.27 andz=1.7, which is in agreement with the
known PC exponent§d=0.2855), z=1.7§3), and thepre-
C. Spontaneous symmetry breaking vious estimate of in Sec. IV.

The growth processes considered in this paper are trans- N ) ]
lationally invariant in the height direction. This symmetry is E. Gff-critical simulations
spontaneously broken in the smooth phase where the models In order to determine the exponeat directly, we per-
select one of the heights as the bottom layer of the interfacéorm off-critical simulations in the steady state of the smooth
In order to quantify this symmetry breaking we consider anphase. Here we expect the stationary densifyto scale as
order parameter (pc—p)Po, where8y=0.92(2) is the order parameter expo-
nent of the PC class. Surprisingly, a rough estimatgpin
M= E 2 (— 1M, (18) standard Monte Carlo simulations of va_riamsanqc yields
L5 much smaller values of about 0.6, which deviate from the
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initial conditions. Similarly, the critical properties of the
faceting transition ap=0.5 are affected by random initial
conditions.
The nonuniversal behavior for random initial conditions is
] related to aradditional parity conservation law. In fact, the
] dynamic ruleg1) and(2) not only conserve the parity of the
EEryTa——r 0.40' oL . p_article nu_mbe( but also_ conserve the paritylof the droplet
e ' € ' size. Starting with a flat interface the lateral size of droplets
) . . is always even, allowing them to evaporate entirely. How-
FIG. 10. Left: the effective exponefilp(¢) as a function ok in  eyer, for a random initial configuration, droplets of odd size
time steps the bottom layer density is averaged ovéisatples. A can evaporate, slowing down the dynamics of the system.
simple linear fit gives the estimajg,~0.89. Right: corresponding In the language of BAW2'’s the additional parity conser-
simulation results for the truncated model. Here the effective expoyation law is due to the absence of nearest-neighbor diffu-
nent is almost independent ef Notice the different ranges @f. sion. Particles can 0n|y move by a combination of offspring
production and annihilation, i.e., by stepsteb lattice sites.
expected value by more than 30%. Similar deviations arerherefore, particles at even and odd lattice sites have to be
observed ifv, andv| are determined in off-critical simula- distinguished. Only particles of different parity can annihi-
tions. For example, the estimaig=2.4(5) in Sec. IV is late. Starting with a fully occupied lattice, all particles have
much smaller than the expected PC vaiye-3.2. alternating parity throughout the whole temporal evolution,
Off-critical steady-state simulations are known to be quiteleading to the usual critical behavior at the PC transition. For
inaccurate because of long transients. Moreover, they are exandom initial conditions, however, particles of equal parity
tremely sensitive to errors in the estimationpf. However, ~cannot annihilate, slowing down the decay of the particle
in the present case the deviations have a different origindensity. Similar sector decomposition has been observed in
This can be shown by determining the effective exponenk-mer modelsisee, for example, M. Barma and co-workers
Bo(e) that is defined as the local slopem(e) in a log-log ~ [34). BAW2's and other particle processes with parity-
representation between the data poirits 1,i) conserving diffusion will be analyzed in a future study.

04

B(e) Inng;j—Inngj_; (20) G. Comparison with other models
€)= —_ Y,
o Ine—Ine_; Recently, Park and Kahng proposed a growth model that
o , involves two symmetric particle speci¢®6]. Particles are
wheree; =p.—p;, providing an estimate adsorbed(desorbeyl with probability q (1—q), except at
. those sites where the nearest neighbors are occupied by par-
Bo=1im Bo(e). (21) E A

ticles of the other(same species. Thus the dynamic rules
mimic a PC transition with two symmetric absorbing states

As shown in Fig. 10, the effective exponentreasesslowly ~ [17]. However, the critical exponents at the roughening tran-
and tends towards the expected PC valuea®. A Simp'e sition were found to differ Significantly from the eXpeCted
linear extrapolation yields the estimate 0.9, which is in roughPC values. In fact, once a new layer is completed, the con-
agreement with the expected value . figuration of the previous layer becomes frozen. Thus the
The drift of Bo(€) is unusual and may be related to the kinks bgtween different domains qQ not act as pinning cen-
influence of dynamic processes at higher levels of the interters, which destroys the PC transition. Consequently, the in-
face. To support this hypothesis, we analyze tiumcated ~terface starts to propagate for-q..
version of modelC, where the heights are restricted to take __Another parity-conserving model introduced by Nethal.
the values 0 and 1 in order to eliminate the feedback froni27] was inspired by interacting monomer-dimer modéa]
higher levels. Repeating the same type of analysis at th@xhibiting a PC transition. The dynamic rules involve diffu-
critical pointp.=0.5831), weobserveB,(¢) to be in agree-  Sion, order-preserving branching, and order-breaking branch-
ment with the expected PC value over a wide range.of ing. In the absence of order-breaking branching, the interface
Thus we are led to the conclusion that dynamic processes &volves within a monolayer and undergoegraroughening

higher levels are responsible for corrections to scaling in thd"@nsition belonging to the PC class. In the presence of order-
off-critical regime. breaking processes several layers may be formed. However,

in this case the interface is always rough and the transition is
lost.

Even more recently, the same authors investigated a class

So far we have considered the temporal evolution startingf parity-conserving growth modelgl9], generalizing the
from an entirely flat interface. It would be natural to expectrules(1) and(2) by the addition of a process for the evapo-
the asymptotic scaling behavior to be universal for any initialration of dimers from the middle of plateaus. A similar gen-
interface configuration with finite width and short-range cor-eralization of monomer models has been studied in the con-
relations. Surprisingly this is not true. For example, startingtext of nonequilibrium wetting[28]. In both cases the
with random initial conditionsh;=0,1 the densities turn  additional evaporation process destroys the stability of the
out to decay much more slowly. For restricted variants wesmooth phase. In the dimer models, however, the roughening
observe an algebraic decay of with an exponentd, transition of the dimer models is replaced by a faceting tran-
=0.13 that differs significantly from the value 0.275 for flat sition between a rough and goppositely faceted phase.

e—0

F. Unusual scaling for random initial conditions
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p
107
1-p
FIG. 11. Extended particle interpretation. Dimers are adsorbed 100 10’ t103 10° 10 l(t)o 1000
(2A— @) and desorbedX— 3A) at the bottom layer. Similar pro-
cesses take place at higher levels. FIG. 12. Unidirectionally coupled PC processes. Left: densities

na,Ng,nc as functions of time. Right: magnetizatiov(t) as a
Thus the models of Ref19] link anomalous roughening and function of time averaged over 1000 independent realizations.
faceting transitions.

5,=0.2805), 85=0.1907), 6.=0.12010),

VI. UNIDIRECTIONALLY COUPLED (23
BRANCHING-ANNIHILATING RANDOM WALKS . . . . .
WITH AN EVEN NUMBER OF OFESPRING which are in fair agreement with the corresponding expo-
nents of the dimer model. We also measured the analog of
In order to understand the universal properties of paritythe magnetizatioM =n,—ng+nc—np+ - - - in 20 coupled

conserving roughening transitions, let us extend the particleC processes, obtaining an algebraic desaly~t~ "I with
interpretation. Assuming th&t= 0 is the bottom layer of the the exponentd/v=0.743). This confirms the hypothesis
interface, we associate particlésB,C, ... with sites at that the roughening transition of the dimer models belongs to
heighth;<0,1,2 ... (see Fig. 11 As explained before, the the universality class of unidirectionally coupled PC pro-
dynamic processes at the bottom layer may be interpreted agsses. Notice that the couplidg—A+B violates parity

an effective reactiolM—3A,2A—@. Similarly, theB par-  conservation at theB level. However, using a parity-
ticles on top of the first layer react bB—3B,2B—@.  conserving coupling such a&— A+ 2B, we obtain similar
Clearly, the temporal evolution of thB particles strongly results at the transition.

depends on the actual configuration of thparticles. On the Before turning to the field-theoretic formulation of
one hand, ai particle implies the presence oBparticle at  coupled PC processes, let us consider the mean-field ap-
the same site, giving rise to an effective reactfor A+ B. proximation of the reaction scheni22)

On the other hand, both the RSOS constraint and the restric-

tion that dimers react at adjacent sites of equal height may &tnA:anA—)\ni,

inhibit the above reactions, introducing an effective feedback

from higher levels to lower ones. However, as suggested by atnB=crnB—>\n§+ MUNg, (29
our numerical results, this type of inhibiting feedback does

not affect the critical behavior at the roughening transition. atnc=onc—)\né+ MUNg, ..,

Similarly, the C particles perform an effective BAW2 on
top of the second layer. Therefore, the critical behavior of thevheren, ,ng ,nc correspond to the densitieg,ny,n, in the
first few layers may be described in terms of a simplifiedgrowth modelss and\ are the rates for offspring produc-
particle model where several BAW2 processesuariglirec-  tion (dimer evaporationand pair annihilatior(dimer depo-

tionally coupled according to the reaction scheme sition), respectively. The coefficient is an effective cou-
pling constant between different particle species. Since these
A—3A, B—3B, C—3C, equations are coupled in only one direction, they can be
solved by iteration. Obviously, the mean-field critical point
JA~F 2B—@ 2C—0 (22) is 0.=0. For small values o the stationary particle den-
' ' ' sities in the active state are given by
A—A+B, B—B+C, C—C+D,..., o wla\12 wl o\ v .
A=y M=y ) cxlw (25

generalizing the concept of “coupled DH6]. We propose
this reaction scheme to characterize the universal behavior @grresponding to the mean-field critical exponents
the dimer models at the roughening transition.

To support this hypothesis, we study the reacti@® by BNF=1, pY¥F=1/2, p¥F=1/4,.... (26)
Monte Carlo simulations. To this end we use three copies of
the BAW2 introduced in Ref.13] coupled by the rule that a These exponents should be valid fbr-d.=2 (see below
selectedA(B) particle instantaneously createsB§C) par-  Solving the asymptotic temporal behavior we fimg=1,
ticle at the same position, provided that the target site ismplying that sy'" =2, Although this simple mean-field
empty. Using a lattice size of 2500 sites we measure thealculation does not include parity conservation, it explains
particle densitiesi,,ng,Nc as functions of time at critical- the reduced values of the exponents at higher levels. The
ity. As shown in Fig. 12, they display essentially the samedifferent numerical values in one dimension are due to fluc-
behavior as the densitieg),n,,n, in the dimer model. Av- tuation corrections that may be computed within a field-
eraging over one decade in time we obtain the exponents theoretic renormalization group approach. A field theory for
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a single BAW2 was introduced and studied in detail by m(t)+1 with probabilityp
Cardy and Taber[14]. Following their notation, the effec- hi(t+1)=
tive (unshifted action of unidirectionally coupled BAW?2's
should be given by

m(t) with probability 1—p, @

where m(t) =maxh;_4(t),hi(t),h; 1(t)]. Starting from a flat
interfaceh;(0)=0, the sites at maximal heighi(t) =t may

Spo, 1,82, - - onljz, . be considered as the active sites of a DP process. The nucle-
w ation process turns active sites into inactive sites with prob-
— d Dl =DV ho— N1 — &) 2 ability 1—p, Wh_lle the deter_mmlstlc growth o_f tgrraces re-
j ' dtgo (il Ve ML= 40 ¥ sembles offspring production. Therefore, jf is large

_ o enough, the interface is smooth and propagates with velocity
+o(1= YD) it w(l— b )b 11}, (27) 1. Below a critical thresholdp,=0.5391), however, the
growth velocity is smaller than 1 and the interface evolves
into a rough state. As shown in Rg6], this model is a
realization of unidirectionally coupled DP processes in a co-
moving frame, where the order parametegsare given by

wherey_ = _1=0. Here the fieldg), andy represent the

configurations of the system at ledelHowever, even for a

single copy in 31 dimensions the field-theoretic treatment

poses considerable difficulties. They stem from the presence 1 K

of two cnucgl dlmen§|ons:dc=2, above wr,uch me:':m—fleld ne(t) = — 2 s St t-h- (29)

theory applies, andl.~4/3, where ford>d; (d<d/) the LT n=o

branching process is relevafitrelevanj at the annihilation

fixed point. Therefore the physically interesting spatial di-In the following we introduce a parity-conserving PNG

mensiond=1 cannot be accessed by a controliedxpan- model that belongs to the universality class of unidirection-

sion down from upper critical dimensiaf,=2. A one-loop  ally coupled PC processes. The model is defined on a one-

calculation for the actiori27) would be an even more diffi- dimensional lattice with periodic boundary conditions and

cult task. evolves by sublattice-parallel updates. In the first half time
A fundamental problem of the field theory for coupled DP step pairs of sitesi(i +1) with eveni are updated. If(t)

describing the monomer case is the relevant coupling #h;(t), the heights are incremented by one step,

which grows under renormalization group transformations

[6]. Moreover, even in a one-loop calculation certain infrared hi(t+1/2)=h;(t) +1, (30
divergent diagrams are encountered that are proportional to
w. Similar difficulties are expected for unidirectionally hy  1(t+1/2)=h;, (1) + 1.

coupled PC processes. They might be responsible for viola-
tions of scaling in the long-time limit appearing as a curva-If, however, the two heights are equal, they are updated by
ture of ng andn¢ in Fig. 12. the probabilistic rule

hi(t+1/2)=h;, 1(t+1/2)
VII. PARITY-CONSERVING POLYNUCLEAR GROWTH
MODELS m(t)+1 with probabilityp

Roughening transitions related to coupled DP were first m(t) with probability 1 p,
observed in so-called polynuclear grondANG) processes
[7,29-33. In these models the interface grows by nucleatiorwhere m(t) = maxh;_;(t),h;(t),h,1(t),ho(t)]. In the second
processes and deterministic growth of terraces. The use bflf time step the same update rule is applied to odd pairs of
parallel updates ensures that the maximal propagation velosites. Clearly, this model generalizes the PNG model of Ref.
ity is 1. Depending on the rates for nucleation and terracé?] and conserves parity at each height level in a comoving
growth, the models exhibit a roughening transition from aframe. The conservation law leads to the formation of pin-
moving rough phase to a smooth phase propagating at maxng centers moving at maximal velocity.
mal velocity. As shown in Refl4], PNG models may be Performing Monte Carlo simulations we observe a rough-
viewed as upside-down versions of monomer models in ®ning transition at the critical threshold,=0.56973).
comoving frame. In some cases it is even possible to relatStarting from a flat interface, we measure the densitjgt)
PNG and monomer models exactly to each other, resolvingefined in Eq(29) as functions of time. As shown in Fig. 13,
the apparent paradox that the transition in PNG models rethe temporal decay afy is similar to the one observed in the
quires parallel updates, whereas for monomer models thdimer model. Averaged over two decades in time we obtain

(31

type of updates does not play a role. the estimates
In order to understand the DP mechanism, let us consider
the PNG model introduced by Késeand Wolf 7], which is 5,=0.281), 6,=0.2%42), 6,=0.142), (32

updated synchronously in two substeps. At first all up

(down) steps of the interface move deterministically to thewhich are compatible with the values listed in Table I. The
left (right) over a distance ofi lattice spacings. Then all magnetizationM (t) defined in Eq.(18) does not show a
heights are increased with probabilipy Thus the model is clean power-law behavior but seems to approach an
unrestricted. Fou=1 this dynamic rule can be expressed asasymptotic decay %7, in agreement with previous findings

a single parallel update (see inset of Fig. 13 Therefore, we conclude that the rough-
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scaling form for logarithmic roughening that is confirmed by
high precision simulations. Moreover, we have shown that
the universal critical behavior at the first few layers may be
described in terms of unidirectionally coupled branching-
annihilating random walks with two offspring. Thus we sug-
gest that the concept of undirectionally coupled PC processes
defines a whole universality class of parity-conserving
roughening transitions.
In the case of equal rates for dimer adsorption and desorp-
tion all variants undergo a second phase transition where the
001 , . , width increasesilgebraically In the restricted case this tran-
' 10° 10° 10° 10° sition has been identified as a faceting transition from a

t rough to a faceted phag&9]. In the unrestricted variants,
however, we observe a transition from a rough to a freely
growing phase characterized by spiky interface configura-

ot o1

FIG. 13. Parity-conserving PNG model. The densities
ng, ...,n3 are shown as functions of time. The exponeéitsare

estimated in the interval $&t<10°, suggesting that the model tlor_lrsh. . ibl . d lizati
belongs to the universality class of unidirectionally coupled PC pro- ere are various possible extensions and generalizations

cesses. The inset shows the magnetizalibft). The dashed line of th? mod.els studied in thi§ pqper. VefY recently, N!I)lal.
indicates the slope-0.77. [19] investigated a generalization of variahtwhere dimers

may also evaporate from the middle of plateaus. Even at a

to the universality class of unidirectionally coupled PC pro-©f the smooth phase, turning it into a faceted phase. Remark-
cesses. ably, a sharp transition between the faceted and the rough

phase still remains, leading to interesting crossover phenom-
ena between different universality classes that have not been
studied so far. It would also be interesting to investigate

In this paper we have investigated a class of parity-parity-conserving growth processes in higher dimensions.
conserving growth processes in which dimers adsorb at siteSince the upper critical dimensidad] is less than 2, we ex-
of equal height and desorb at the edges of terraces. At pect the roughening transition—if still existing—to be de-
critical growth ratep=p. the models display a roughening scribed by mean-field exponents. One may also consider
transition from a smooth to a rough phase. In order to demgrowth processes af-mers where the number of particles at
onstrate the robustness of this transition, we have studiedach height level is preserved moduldEspecially in higher
four variants of a(1+1)-dimensional parity-conserving dimensions, thesa-mers might appear in different shapes
growth process with and without RSOS constraint, using eiand orientations. After all it would also be interesting to find
ther random-sequential or sublattice-parallel dynamics. Irexperimental realizations for deposition and evaporation of
addition, we have introduced a parity-conserving polynucleacomposite particles.
growth process where a similar transition takes place in a
comoving. frame. In all cases the rql_Jghening pransition is ACKNOWLEDGMENTS
characterized by the same type of critical behavior.

The investigated dimer models generalize previously We would like to thank N. Menyhd for pointing out the
studied monomer models. Their essential feature is a paritpossibility of parity-conserving polynuclear growth pro-
conservation law at each height level, changing the universalesses. H.H. thanks the MTA-MFA in Budapest for hospital-
properties of the roughening transition. The conservation lavity where parts of the work have been done. The simulations
leads to the formation of pinning centers separating regionsere performed partially on the FUJITSU AP-1000, AP-
of even and odd parity. Thus, in contrast to the monomeB000, and System-V parallel supercomputers. We thank R.
case, the interface remains pinned to the initial height levelBishop for helping us operate the System-V machine..G.O
At the transition the width is found to increatmgarithmi-  gratefully acknowledges support from the Hungarian re-
cally with time due to a slow diffusion and annihilation of search fund OTKAGrant Nos. T025286 and T023552nd
the pinning centers. In E@7) we have proposed a finite-size Bolyai (Grant No. BO/00142/99

VIIl. CONCLUSIONS AND OUTLOOK

[1] H. Hinrichsen and G. @or, Phys. Rev. Let82, 1205(1999. [3] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lé8,
[2] For reviews on growth phenomena and roughening transitions,  889(1986); T. Halpin-Healy and Y.-C. Zhang, Phys. R&%4,
see J. Krug and H. Spohn, iBolids Far from Equilibrium: 215(1995.
Growth, Morphology and Defegtsedited by C. Godmhe [4] U. Alon, M.R. Evans, H. Hinrichsen, and D. Mukamel, Phys.
(Cambridge University Press, Cambridge, 19998. L. Bara- Rev. Lett.76, 2746(1996; Phys. Rev. B57, 4997 (1998.

basi and H. E. StanleyFractal Concepts in Surface Growth  [5] W. Kinzel, Ann. Isr. Phys. Sod, 425(1983.
(Cambridge University Press, Cambridge, 1995 Krug, Adv. [6] U.C. Tauber, M.J. Howard, and H. Hinrichsen, Phys. Rev.
Phys.46, 139(1997). Lett. 80, 2165 (19998; Y.Y. Goldschmidt, ibid. 81, 2178



3852 HAYE HINRICHSEN AND GEZA ODOR PRE 60

(1998; Y.Y. Goldschmidt, H. Hinrichsen, M.J. Howard, and [20] In [1] we introduced this scaling form adnV?(L,t)

U.C. Tauber, Phys. Rev. 59, 6381 (1999; H.K. Janssen, =In[t*(t/L?]. Here we use a slightly different notation in or-
e-print cond-mat/9901188. der to emphasize that is an amplitude rather than a critical
[7] J. Kerfesz and D.E. Wolf, Phys. Rev. Le$2, 2571(1989. exponent.

[8] J.M. !—6962 and H.J. Jensen, Phys. Rev. L8}.1734(1998.  [21] J.R.G. de Mendonca, e-print cond-mat/9903335.
[9] G. Bianconi, M.A. Mumz, A. Gabrielli, and L. Pietronero, [22] Our earlier conjectur&V~Int in Ref.[1] could not be con-

e-print cond-mat/9902239. _ _ firmed by more precise simulations.
[10] ;::tt‘igﬁzrssaese”gtﬂL”tct':‘:)iz [r)nZtl/g%ulcﬁo(lagasswe growth; ¢f. Prog) £, Family and T. Vicsek, J. Phys. 28, L75 (1985.
& i : 24] J.M. Lopez, M.A. Rodrguez, and R. Cuerno, Phys. Rev5E,
[11] H.K. Janssen, Z. Phys. B2, 151(1981); P. Grassbergeibid. [24] 3993(?;97) 0 y
47, 365(1982. '
[12] H. Takayasu and A. Yu Tretyakov, Phys. Rev. L68, 3060 [25] P. Grassberger and A. de la Torre, Ann. PH}Y.) 122 373
) ) ' ' ' ' (1979.

(1992; D. ben-Avraham, F. Leyvraz, and S. Redner, Phys.
Rev. E50, 1843(19949; I. Jensenjbid. 50, 3623(1994).
[13] D. Zhong and D. ben-Avraham, Phys. Lett289, 333(1995.
[14] J.L. Cardy and U.C. Taber, Phys. Rev. Let#7, 4780(1996;

[26] S. Park and B. Kahng, Phys. Rev. Lefto be publishey
e-print cond-mat/9807193.
[27] J3.D. Noh, H. Park, and M. den Nijs, Phys. Rev.5H, 194

J. Stat. Phys90, 1 (1998. (1999; e-print cond-mat/9808272.
[15] N. Menyhad, J. Phys. A27, 6139(1994; N. Menyhad and G. [28] H. Hinrichsen, R. Livi, D. Mukamel, and A. Politi, Phys. Rev.
Odor, ibid. 29, 7739(1996. Lett. 79, 2710(1997.

[16] M.H. Kim and H. Park, Phys. Rev. Letf3, 2579(1994); H. [29] D. Richardson, Proc. Cambridge Philos. S, 515 (1973.
Park, M.H. Kim, and H. Park, Phys. Rev.®, 5664(1995.  [30] N. Goldenfeld, J. Phys. A7, 2807(1984.

[17] H. Hinrichsen, Phys. Rev. B5, 219 (1997. [31] J. Krug and H. Spohn, Europhys. Le#.219(1989.

[18] G. Odor, A. Krikelis, G. Vesztergombi, and F. Rohrbach, in [32] C. Lehner, N. Rajewsky, D.E. Wolf, and J. Keste Physica A
Proceedings of the 7th Euromicro Workshop on Parallel and 164, 81 (1990.
Distributed ProcessingFunchal, Portugal, 1999, edited by B. [33] A. Toom, J. Stat. Phy</4, 91 (1994); 74, 111 (1994).
Werner (IEEE Computer Society Press, Los Alamitos, CA, [34] M. Barma, M. D. Grinberg, and R. B. Stinchcomb, Phys. Rev.
1999. Lett. 70, 1033(1993; M. Barma and D. Dharibid. 73, 2135

[19] J.D. Noh, H. Park, and M. den Nijs, e-print cond-mat/9812432. (1994).



